# On Commercial Construction Activity's Long and Variable Lags

David Glancy<sup>1</sup> Robert Kurtzman<sup>1</sup> Lara Loewenstein<sup>2</sup>

<sup>1</sup>Federal Reserve Board <sup>2</sup>Federal Reserve Bank of Cleveland

DISCLAIMER: The views expressed are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System, the Federal Reserve Bank of Cleveland, or of anyone else associated with the Federal Reserve System.

# Commercial Construction Activity Lags



- Commercial construction about 20% of total investment
- Not as well studied, in part because Census does not put out as much data as on residential construction
- Commercial construction lags total investment 

   Hours chart

- Commercial construction lags other investment (Edge, 2007), due to long planning horizons (Millar et. al., 2016)
- Developers have option to halt investment if conditions deteriorate (Majd & Pindyck, 1987) so planning stage also critical to *whether* construction occurs
- Abandoned projects are often not tracked, so project planning and abandonment dynamics not well understood

- Panel data for over 200,000 construction projects from 2004-2022 to document a few facts
  - Long planning phase (1.5 years for completed projects)
  - Abandonments out of planning phase common (40% of projects)
  - Very few projects under construction are abandoned
  - Abandonments are state dependent
- Develop a model consistent with dynamics
- Model testable implication: Stock of projects in planning matters for responsiveness of activity to economic shocks
  - Validate with local projections
- Calibrated DSGE model for counterfactuals

- CBRE-EA SupplyTrack (via Dodge Data Analytics) microdata on phases of construction from 2004-2022
- Geography, property type, (expected) project cost, building size
- The planning process for construction
  - Planning: Pre-planning, Planning, Final Planning, Bidding
  - Under construction
  - Completed, Abandoned
  - Deferred

|                    | phase[t+1] |                    |           |          |           |       |  |  |
|--------------------|------------|--------------------|-----------|----------|-----------|-------|--|--|
| phase[t]           | Planning   | Under construction | Completed | Deferred | Abandoned | Total |  |  |
|                    | Row %      | Row %              | Row %     | Row %    | Row %     | Row % |  |  |
| Planning           | 93.2       | 4.4                | 0.0       | 1.1      | 1.2       | 100.0 |  |  |
| Under construction | 0.0        | 88.7               | 11.2      | 0.1      | 0.0       | 100.0 |  |  |
| Deferred           | 0.3        | 0.5                | 0.2       | 96.2     | 2.7       | 100.0 |  |  |
| Total              | 56.6       | 23.3               | 2.6       | 16.3     | 1.2       | 100.0 |  |  |

- $\approx$  93% of projects in planning stay in planning.
- Most abandons out of planning phase
  - Deferrals are most likely to be abandoned
- 99% of projects under construction are completed

Summary Statistics

## Abandonment Shares out of Planning are High



- About 60% of projects ultimately go under construction while 40% are abandoned
- Heterogeneous across property types but all 30% or more

|                                                              | Project Ever Moves to Construction |                         |                         |  |  |
|--------------------------------------------------------------|------------------------------------|-------------------------|-------------------------|--|--|
| Cum. Price $Growth_{i,t0,t0+4}$                              | (1)<br>0.57**<br>(0.08)            | (2)<br>1.04**<br>(0.10) | (3)<br>1.18**<br>(0.10) |  |  |
| Log Real Project Cost                                        | ()                                 | ()                      | 0.10**                  |  |  |
| Log Building Square Footage                                  |                                    |                         | -0.12**<br>(0.00)       |  |  |
| Fixed effects<br>R <sup>2</sup> <sub>a</sub><br>Observations | no<br>0.046<br>246264              | yes<br>0.080<br>246264  | yes<br>0.102<br>246263  |  |  |

- Higher commercial price appreciation ⇒ project more likely to be completed (i.e., fewer abandons)
- SEs clustered by MSA
- Fixed effects: MSA, quarter of plan start, and property type

### Model of Developers:

- Developers rent out buildings (*B<sub>t</sub>*) at rent *r<sup>b</sup>* and invest in planning and construction starts.
- Developers face cost  $\iota_t$  to initiate a plan start (generating a unit of P)
- Planning ends with constant hazard λ, giving option for developer to proceed with construction (at a cost c ~ F realized at the end of planning)
- Developers optimize planning investment  $(I_t)$  and the threshold cost below which construction occurs  $(\kappa_t^*)$ 
  - New construction:  $\lambda P_{t-1}F(\kappa_t^*)$

## DSGE model later to endogenize $r_t^b, \iota_t, r_t$

### Problem of the Developer

$$\max_{\{I_{t+s}^{p},\kappa_{t+s}^{*}\}_{s=0}^{\infty}} \quad \mathbb{E}_{t} \sum_{s} (\prod_{i=0}^{s} \frac{1}{1+r_{t+i}}) \left(\underbrace{\frac{r_{t+s}^{b}B_{t+s-1}}{\prod_{\mathsf{Rental Income}}} - \iota_{t+s}I_{t+s}^{p} - \lambda P_{t+s-1} \int_{0}^{\kappa_{t+s}^{*}} \kappa dF(\kappa))}_{\mathsf{Planning \& Construction Expenditure}}\right)$$

s.t.

$$P_{t+s} = (1 - \delta_p - \lambda)P_{t+s-1} + I_{t+s}^p$$
  

$$B_{t+s} = (1 - \delta_b)B_{t+s-1} + \underbrace{\lambda P_{t+s-1}F(\kappa_{t+s}^*)}_{I_{t+s}^b},$$

Solution:

$$\begin{split} \kappa_t^* &= q_t^b = \mathbb{E}_t \frac{1}{1 + r_{t+1}} \left( r_{t+1}^b + (1 - \delta_b) q_{t+1}^b \right) \\ \iota_t(I_p^t) &= q_t^p = \mathbb{E}_t \frac{1}{1 + r_{t+1}} \left( \lambda \int_0^{\kappa_{t+1}^*} (q_{t+1}^b - \kappa) dF(\kappa) + q_{t+1}^p (1 - \delta_p - \lambda) \right), \end{split}$$

where  $q^p$  and  $q^b$  are the Lagrange multipliers on the planning and building accumulation constraints

,

1 Commercial construction projects have long planning times

Steady State Average Time to 
$$\mathsf{Plan} = \frac{1}{\lambda}$$

Not all projects in planning advance to construction and abandonments are state dependent

Share  $1 - F(q_t)$  of potential construction starts are abandoned

Testable implication: Response of construction investment to price appreciation depends on planning stock

$$rac{\partial rac{I_t^c}{B_{t-1}}}{\partial q_t} = \lambda rac{P_{t-1}}{B_{t-1}} f(q_t)$$

Measure of planning rate by region:

Planning 
$$\text{Rate}_{i,t} = \frac{\text{Projects in Planning}_{i,t}}{\text{Building Stock}_{i,t}} \times 100$$

- Projects in planning is from CBRE-EA
- Building stock measures constructed from Costar and RCA data

### Planning Rates Vary over Space and Time



#### Figure: Distribution of Planning Rates over Time

Notes: Time series of various quantiles of planning rates on left. Histogram of distribution in 2011 and 2019 on right. MSAs weighted by number of commercial properties.



Local projections estimates of commercial construction and employment response to price appreciation

 $\begin{aligned} \frac{\text{Construction Starts}_{i,t,t+h}}{\text{Building Stock}_{i,t}} &= \beta^{h} \Delta ln(\text{Comrcl. Price Index}_{i,t}) \\ &+ \delta^{h} \Delta ln(\text{Comrcl. Price Index}_{i,t}) \times \text{Plan. Rate}_{i,t-1} \\ &+ \gamma^{h} X_{i,t} + \eta^{h}_{i} + \tau^{h}_{t} + \epsilon^{h}_{i,t} \end{aligned}$ 

- {β<sup>h</sup>} & {δ<sup>h</sup>} trace response of construction activity to price appreciation based on stock of projects already in planning
- $\eta^h_i$ ,  $\tau^h_t$ : MSA and quarter fixed effects
- X<sub>i,t</sub>: Includes Plan. Rate<sub>i,t</sub>, and controls for lagged price appreciation, planning/construction intensity, and commercial construction employment.

Other data used here:

- Employment from QCEW
- Commercial construction starts constructed from Dodge microdata

### Response of Construction Starts



#### Figure: Effect of 1pp Price Appreciation

Notes: Left figure omits interaction, right figure plots how a 1sd increase in planning rates affects the response of construction starts.

Commercial Construction Employment

|                                              | 100x 3-year Construction Starts |        |          | 100× 3-y | ear Commercial Emp. Growth |        |  |  |
|----------------------------------------------|---------------------------------|--------|----------|----------|----------------------------|--------|--|--|
|                                              | (1)                             | (2)    | (3)      | (4)      | (5)                        | (6)    |  |  |
| Price Growth <sub>i,t</sub>                  | 3.54**                          | 2.31** | -10.28** | 3.44**   | 2.95**                     | -3.03  |  |  |
|                                              | (0.77)                          | (0.78) | (3.43)   | (0.59)   | (0.62)                     | (2.29) |  |  |
| $\times$ Planning Rate <sub>i,t-1</sub>      |                                 | 2.52** | 2.97**   |          | 1.00**                     | 0.67   |  |  |
|                                              |                                 | (0.74) | (0.95)   |          | (0.38)                     | (0.51) |  |  |
| $\times$ Under Construction <sub>i,t-1</sub> |                                 |        | 0.98     |          |                            | 0.25   |  |  |
|                                              |                                 |        | (1.90)   |          |                            | (1.11) |  |  |
| $\times$ Fast Planning <sub>i</sub>          |                                 |        | -1.02+   |          |                            | 0.37   |  |  |
|                                              |                                 |        | (0.54)   |          |                            | (0.43) |  |  |
| $\times$ Saiz Elasticity <sub>i</sub>        |                                 |        | 0.25     |          |                            | -0.07  |  |  |
|                                              |                                 |        | (0.31)   |          |                            | (0.19) |  |  |
| $\times$ In(Employment) <sub>i,00</sub>      |                                 |        | 0.92**   |          |                            | 0.53** |  |  |
|                                              |                                 |        | (0.24)   |          |                            | (0.17) |  |  |
|                                              |                                 |        |          |          |                            |        |  |  |
| Lags                                         | yes                             | yes    | yes      | yes      | yes                        | yes    |  |  |
| Fixed effects                                | yes                             | yes    | yes      | yes      | yes                        | yes    |  |  |
| R <sub>a</sub> <sup>2</sup>                  | 0.750                           | 0.752  | 0.789    | 0.619    | 0.620                      | 0.664  |  |  |
| Observations                                 | 13549                           | 13549  | 9109     | 13533    | 13533                      | 9104   |  |  |

#### Table: Response to Price Appreciation

- 30% price appreciation ⇒ ↑ construction starts by about 1% of the building stock after 3 years.
- Effect 1.3% higher for an MSA 1sd above the mean in terms of the planning rate.

- Building producers (same as simple model)
- Households Households
- Capital producers 
   Capital Producers
- Final good producers Final Good Producers
- Government
   Government

# DSGE model endogenizes $r_t^b, \iota_t, r_t$

- $r_t^b$  from making B input to production
- $\iota_t$  from external planning adjustment costs
- rt from pricing one-period government bonds

▶ Equilibrium

0.752

3.488

s

а

| Parameters                | Value     | Description                               | Target/Citation                    |  |  |  |  |  |
|---------------------------|-----------|-------------------------------------------|------------------------------------|--|--|--|--|--|
| Standard Macro parameters |           |                                           |                                    |  |  |  |  |  |
| ω                         | 0.907     | Labor Disutility                          | L = 1                              |  |  |  |  |  |
| Ζ                         | 0.490     | Productivity                              | Y = 1                              |  |  |  |  |  |
| β                         | 0.995     | Household Discount Factor                 | r = 2% (annual)                    |  |  |  |  |  |
| $\gamma$                  | 1.0       | Coefficient of Relative Risk Aversion     | Chetty (2006)                      |  |  |  |  |  |
| ν                         | 0.276     | Inverse Frisch elasticity of labor supply | Gertler and Karadi (2013)          |  |  |  |  |  |
| $\delta_k$                | 0.025     | Capital Depreciation                      | Gertler and Karadi (2013)          |  |  |  |  |  |
| $\alpha$                  | 0.287     | K income share                            | Capital (K+B) share= $\frac{1}{3}$ |  |  |  |  |  |
| Construction a            | and Plann | ing Parameters                            |                                    |  |  |  |  |  |
| η                         | 0.046     | B income share                            | $\frac{q^b B}{K} = \frac{3}{7}$    |  |  |  |  |  |
| $\lambda$                 | 0.167     | Hazard of Completing Planning             | 1.5-year plan time                 |  |  |  |  |  |
| $\delta_p$                | 0.025     | Planning Depreciation Rate                | Equate to $\delta_k$               |  |  |  |  |  |
| $\delta_b$                | 0.0062    | Building Depreciation Rate                | NIPA                               |  |  |  |  |  |
| ι                         | 0.080     | Cost of Planning Start                    | $q^b=1$                            |  |  |  |  |  |
| $\phi$                    | 1.0       | Planning Adjustment Costs                 | Post-GFC Plan Stock Recovery       |  |  |  |  |  |

Min. Construction Cost (pareto dist.)

Pareto shape parameter

15% soft costs to construction

37% abandonment from planning

### Effect of planning stock on price elasticity

Greater cumulative construction response to TFP shock for economy at SS relative to one with a depressed initial planning stock:





### Effect of Endogenous Abandonment



Using phase data on construction projects, we show

- Projects spend most of their time in planning
- A large share of projects are abandoned from planning
- Construction faster than planning and almost always completed
- Abandonments from planning are state dependent
- A model consistent with these facts will implies response of activity to changes in prices is a function of the stock of projects in planning
- Validate this implication in the cross-section with local projections
- Endogenous abandoment leads to shorter, stronger responses to shocks

# Appendix



Figure: YEAR-OVER-YEAR CHANGE IN CONSTRUCTION HOURS WORKED

| All Projects                                      |      | Weighted |     |       | Unweighted |     |        |  |
|---------------------------------------------------|------|----------|-----|-------|------------|-----|--------|--|
|                                                   | Mean | Std      | p50 | Mean  | Std        | p50 | Ν      |  |
| Planning Start to Construction Start (months)     |      | 15.9     | 12  | 10.7  | 11.7       | 7   | 152573 |  |
| Construction Start to Completion (months)         |      | 12.0     | 15  | 8.8   | 6.5        | 7   | 149552 |  |
| Planning Start to Abandonment (months)            |      | 21.2     | 21  | 23.6  | 20.2       | 18  | 43407  |  |
| Planning Start to Completion (months)             |      | 20.5     | 28  | 19.1  | 14.2       | 15  | 146482 |  |
| Project Construction Value (millions of 2012 USD) |      |          |     | 12.6  | 60.7       | 3   | 260195 |  |
| Building Area (1000s of Sq. Ft.)                  |      |          |     | 107.4 | 985.8      | 32  | 260195 |  |



## Abandonment Shares out of Planning are High (Unweighted)



## Response of Commercial Construction Employment



#### Figure: Effect of 1pp Price Appreciation

Notes: Left figure omits interaction, right figure plots how a 1sd increase in planning rates affects the response of commercial construction employment.



### Households

At time t, a representative household maximizes lifetime utility—which is assumed to be separable and isoelastic—over consumption (of the final good),  $C_t$ , and their labor supplied,  $L_t$ :

$$\mathbb{E}_t \sum_{s} \beta^s \left( \frac{C_{t+s}^{1-\gamma}}{1-\gamma} - \frac{\omega}{1+\nu} L_{t+s}^{1+\nu} \right),$$

where  $\omega > 0$ ,  $\nu > 0$ , and  $\gamma > 0$ . The household maximizes utility subject to a budget constraint:

$$D_{t+s}^{h} + C_{t+s} = (1 + r_{t+s})D_{t+s-1}^{h} + w_{t+s}L_{t+s} + \Pi_t - T_t, \quad (1)$$

where  $D_t^h$  is government debt held by households at time t;  $r_t$  is the one-period real return on government debt;  $w_t$  is the real wage they are paid for their labor;  $\Pi_t$  are any net profits returned by firms—developers, capital producers and final goods producers—which households wholly own; and  $T_t$  are net taxes paid to the government.

The solution to the household problem thus implies standard labor-income and Euler equations:

$$w_t - \omega C_t^{\gamma} L_t^{\nu} = 0$$
  
$$C_t^{-\gamma} - \beta \mathbb{E}_t C_{t+1}^{-\gamma} (1 + r_{t+1}) = 0.$$



Capital depreciates at rate  $\delta_k$  and is rented to firms at rental rate  $r_t^k$ . There is thus a representative capital producer which solves the following problem:

$$\max \qquad \mathbb{E}_{t} \sum_{s} (\prod_{i=0}^{s} \frac{1}{1+r_{t+i}}) (r_{t+s}^{k} \mathcal{K}_{t+s-1} - I_{t+s}^{k}),$$

subject to the capital accumulation equation:

$$K_{t+s} = (1 - \delta_k) K_{t+s-1} + I_{t+s}^k.$$
 (2)

Given there are no adjustment costs to capital investment, the first-order condition (FOC) from the capital producer's problem implies the standard rental rate of capital:

$$r_t^k = r_t + \delta_k. \tag{3}$$



### Final Good Producers

Competitive firms produce output  $Y_t$  by hiring labor  $L_t$  at wage  $w_t$  and renting capital and buildings,  $K_{t-1}$  and  $B_{t-1}$ , respectively, with technology:<sup>1</sup>

$$Y_t = Z_t K_{t-1}^{\alpha} B_{t-1}^{\eta} L_t^{1-\alpha-\eta}, \tag{4}$$

where  $Z_t$  is firm productivity,  $\alpha \in (0, 1)$ , and  $\eta \in (0, 1 - \alpha)$ . Buildings are constructed as outlined earlier in the developer's problem.

Firms choose the amount of labor to use in production and the amount capital and buildings to rent in order to maximize profits (which are zero in equilibrium):

$$\mathbb{E}_t \sum_{s} (\prod_{i=0}^s \frac{1}{1+r_{t+i}}) (Y_{t+s} - w_{t+s}L_{t+s} - r_{t+s}^k K_{t+s-1} - r_{t+s}^b B_{t+s-1}).$$

We thus obtain the following FOCs:

$$w_{t} = (1 - \alpha - \eta) Z_{t} K_{t-1}^{\alpha} B_{t-1}^{\eta} L_{t}^{-\alpha - \eta}$$

$$r_{t}^{k} = \alpha Z_{t} K_{t-1}^{\alpha - 1} B_{t-1}^{\eta} L_{t}^{1 - \alpha - \eta}$$

$$r_{t}^{b} = \eta Z_{t} K_{t-1}^{\alpha} B_{t-1}^{\eta - 1} L_{t}^{1 - \alpha - \eta}.$$
(5)



The government comes into the period with a level of debt  $D_t$ , which is all held by the household. Government spending,  $G_t$ , is exogenously specified and is financed with taxes and new debt issuance. The government thus faces budget constraint:

$$D_t(1+r_t) + G_t = D_{t+1} + T_t.$$
 (6)

Government debt issuance is equal to household bond holdings such that:

$$D_t = D_t^h. (7)$$



Given a sequence of productivities and government policies  $(\{Z_{t+s}, G_{t+s}, T_{t+s}\}_s)$  and a set of initial conditions  $(B_t, P_t, K_t, D_t)$ , a competitive equilibrium is a sequence of prices  $\{r_{t+s}, r_{t+s}^k, r_{t+s}^b, w_{t+s}\}_s$  and quantities  $\{C_{t+s}, L_{t+s}, Y_{t+s}, K_{t+s}, B_{t+s}, P_{t+s}, \Pi_{t+s}, D_{t+s}, D_{t+s}^h\}_s$  such that households and the producers of capital buildings and final goods all solve their respective maximization problems, households' labor supplied equals firm labor demanded, capital and buildings demanded, respectively, building and capital accumulation follow equations (1) and (2), and bond markets clear following equation (7).

Back